

# Parallelizing CoLA

Team 9 11/27/24

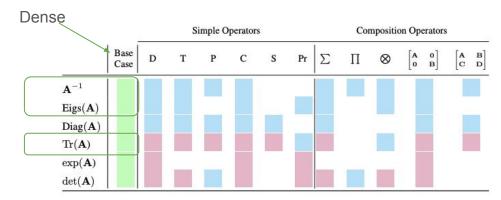
Jaideep Singh Chawla jc12751

Rahul Raman rr4549

Satyanarayana Chillale Sc9960

#### CoLA

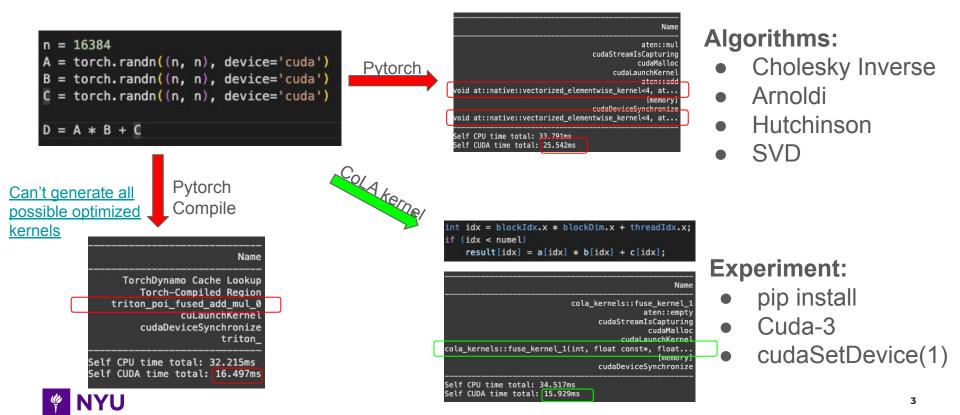
- CoLA is a framework for scalable linear algebra in machine learning.
  - o GPU backend: Pytorch, Jax
  - Algorithms that can exploit matrix structure for efficiency



- Our Objective: Focus on parallelizing the underlying algorithm. (Green)
  - CoLA Kernels



#### **Motivation: Fused Kernels**



# **Cholesky Inversion**



 Iterative approach and interdependency of elements are not GPU friendly:

Cooperative\_groups

atomicAdd

| Kernel Name                   | CPU Time   | CUDA Time  | CUDA Memory |
|-------------------------------|------------|------------|-------------|
| Memcpy DtoH (Device → Pinned) | 0 ms       | 2.5 ms     | 0 MB        |
| aten::linalg_cholesky         | 66.074 ms  | 791.001 μs | 16.00 MB    |
| aten::linalg_cholesky_ex      | 59.751 ms  | 0 ms       | 16.00 MB    |
| aten::cholesky_inverse        | 28.812 ms  | 8.444 ms   | 32.00 MB    |
| Total (Cholesky)              | 154.537 ms | 11.2 ms    | 128 MB      |

Table 3: Performance analysis of Pytorch decomposition kernel.

| Kernel Name                     | CPU Time | CUDA Time  | CUDA Memory |
|---------------------------------|----------|------------|-------------|
| decompose_cholesky(float*, int) | 0 ms     | 859.062 ms | 16.00 MB    |
| cudaLaunchCooperativeKernel     | 0 ms     | 905.684 μs | 0 MB        |

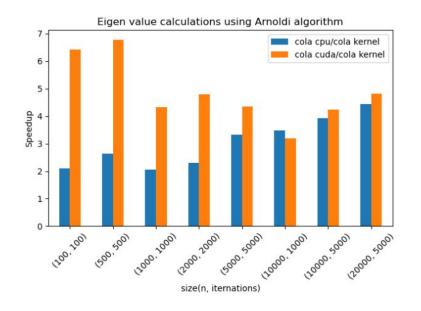
Table 4: Performance analysis of our Cholesky decomposition kernel.

#### **Key Insight:**

- Choose GPU-friendly algorithm
- Reduce / remove block-level synchronization.



# **Arnoldi Eigen calculation**



| Implementation/Matrix size | 100k | 400k |
|----------------------------|------|------|
| Pytorch                    | 67   | 80   |
| ColA GPU                   | 20   | 20   |
| ColA Cuda                  | 60   | 70   |

Table 2: SM utilization (%)

#### **Key Insight:**

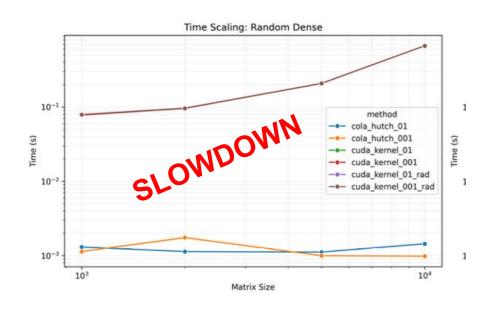
- Data coalescing
- Privatization
- No transfer of data from GPU to CPU



# **Hutchinson Method for Diagonal Estimation**

#### **Key Features:**

- Batch processing
- Shared Memory Optimizations
- Parallel Reduction for checking convergence
- cudaMemcpyAsync, cudaMemsetAsync
- Custom stream for computation, only synchronizes every 10 iterations (when we want to check for convergence)

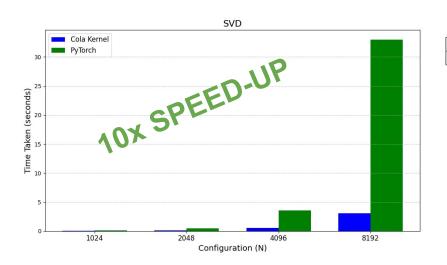


Why is it slow?



## **SVD**

#### Used cuBLAS and cuSOLVERDn



| Kernel Name             | Total CUDA Time | Avg. CUDA Time | No. of Kernel calls |
|-------------------------|-----------------|----------------|---------------------|
| svd_column_rotate_batch | 18.146 s        | 1.366 ms       | 13286               |
| svd_row_rotate_batch    | 13.981 s        | 2.105m s       | 6643                |

Table 5: Profiler of Pytorch SVD

| Kernel Name                 | Total CUDA Time | Avg. CUDA Time  | No. of calls |
|-----------------------------|-----------------|-----------------|--------------|
| cuds_symv_alg6_stage1_upper | 1.541 s         | 188.064 $\mu$ s | 8192         |

Table 6: Profiler of cuBLAS SVD

#### **Key Insight:**

- Breakdown to submatrices.
- Iterative algorithm: launch kernel for every iteration.



### **Conclusion**

- 1. We **eliminated PyTorch's overheads** by writing custom GPU code, optimizing memory usage, parallelism, and grid configurations, **hoping** for speedup and efficiency.
- 2. Deciding which operations to **merge** while maintaining **separate kernel calls for each iteration** resulted in a notable speedup.
- 3. Better memory bandwidth utilization, using shared memory, and ensuring coalesced memory access patterns are only **scratching the surface of CUDA optimizations**, Need to look out for potential bottlenecks due to memory management and branch divergence.



# Q&A

