
Parallelizing CoLA

Team 9
11/27/24

Jaideep Singh Chawla jc12751

Rahul Raman rr4549

Satyanarayana Chillale sc9960



2

Team 9

CoLA
● CoLA is a framework for scalable linear algebra in machine learning.

○ GPU backend: Pytorch, Jax
○ Algorithms that can exploit matrix structure for efficiency

● Our Objective: Focus on parallelizing the underlying algorithm. (Green)
○ CoLA Kernels

Dense



3

Team 9

Motivation: Fused Kernels

Pytorch

CoLA kernel
Pytorch
Compile

Can’t generate all 
possible optimized 
kernels

Algorithms:
● Cholesky Inverse
● Arnoldi
● Hutchinson
● SVD

Experiment:
● pip install
● Cuda-3
● cudaSetDevice(1)

https://discuss.pytorch.org/t/profiling-torch-compile-cuda-code/212521/3
https://discuss.pytorch.org/t/profiling-torch-compile-cuda-code/212521/3
https://discuss.pytorch.org/t/profiling-torch-compile-cuda-code/212521/3


4

Team 9

Cholesky Inversion

● Iterative approach and 
interdependency of elements are 
not GPU friendly:
○ Cooperative_groups
○ atomicAdd

Key Insight:
● Choose GPU-friendly algorithm
● Reduce / remove block-level 

synchronization.

SLOWDOWN



5

Team 9

Arnoldi Eigen calculation

Key Insight:
● Data coalescing
● Privatization
● No transfer of data from GPU to CPU



6

Team 9

Hutchinson Method for Diagonal Estimation
Key Features:
● Batch processing
● Shared Memory Optimizations
● Parallel Reduction for checking 

convergence
● cudaMemcpyAsync, cudaMemsetAsync
● Custom stream for computation, only 

synchronizes every 10 iterations (when 
we want to check for convergence)

SLOWDOWN

Why is it slow?



7

Team 9

SVD
● Used cuBLAS and cuSOLVERDn 

Key Insight:
● Breakdown to submatrices.
● Iterative algorithm: launch 

kernel for every iteration.

10x SPEED-UP Table 6: Profiler of cuBLAS SVD



8

Team 9

Conclusion

1.  We eliminated PyTorch's overheads by writing custom GPU code, optimizing memory 
usage, parallelism, and grid configurations, hoping for speedup and efficiency.

2. Deciding which operations to merge while maintaining separate kernel calls for each 
iteration resulted in a notable speedup.

3. Better memory bandwidth utilization, using shared memory, and ensuring coalesced 
memory access patterns are only scratching the surface of CUDA optimizations,
Need to look out for potential bottlenecks due to memory management and branch 
divergence.



9

Q & A


