CLIP-based Image Geolocation using Hierarchical Feature Learning and RAG

Akshay Raman (ar8692)
Aman Gupta (ag9960)
Prithviraj Murthy (pkm5789)
Satyanarayana Chillale (sc9960)
Srikanth Balakrishna (sb9558)

Problem Statement

- Image Geolocation: Find the precise location of an image taken anywhere on Earth.
- Challenges:
 - Diversity of images. Need large datasets and models.
 - How do you predict at a global scale? Standard classification/regression techniques are infeasible/inaccurate.

GPS Coordinates [LAT, LON]

Image

Contributions

- Trained a CLIP-based image geolocation model on the MediaEval-16 Dataset (4M+ images).
- Designed a novel inference approach based on hierarchical feature clustering which achieves comparable performance while being ~100x more efficient than previous methods.
- Conducted RAG-based text inference using LLMs.

Architecture Diagram

Location Encoder - Deep Dive

Model Training

Inference Methods

- 1. Original (from GeoCLIP paper)
- 2. Hierarchical Feature Clustering
- 3. RAG-based Method

Original Inference Approach

Hierarchical Features Clustering

 We produce 3 RFF encodings using 3 different sigma values that determine the encodings fed into each trained MLP capsule to capture features at different granularities.

 Instead of aggregating these features into a single embedding, We utilize each embedding separately to perform clustering at different levels/global distance scales.

Cluster Sizes Comparison

GPS Gallery Tree	Accuracy at 2500km	Accuracy at 750km	Accuracy at 200km	Accuracy at 1km	% of Coordinates Considered
100000 (original)	0.753	0.568	0.351	0.084	100%
200 (one-level)	0.618	0.390	0.188	0.047	0.7%
800 (one-level)	0.710	0.481	0.253	0.049	1%
1000 (one-level)	0.701	0.480	0.248	0.050	2%
20, 100 (two-level)	0.676	0.430	0.200	0.034	0.2%
100, 20 (two-level)	0.636	0.398	0.177	0.029	0.2%
200, 10 (two-level)	0.676	0.429	0.200	0.033	0.3%

Inference: RAG with LMM

- We also incorporated text embeddings for country, state, and city information and trained the model again.
- During inference, we utilize **multiple RAG prompts** with LLMs (GPT-4o and LLaMA3-LLAVA-Next-8B) and select the best response as the final output.

RAG comparisons

Comparisons

Test Dataset: IM2GPS3k

Methods	Street 1km	City 25km	Region 200km	Country 750km	Continent 2500km
PlaNet [22]	8.5	24.8	34.3	48.4	64.6
GeoCLIP [29]	14.11	34.47	50.65	69.67	83.82
Hierarchical Clustering	9.2	30.26	40.46	67.85	79.57
RAG	15.01	32.53	60.06	72.5	85.08

Samples

<u>Images</u>

Grand Chavalard

Sydney Tower

Prediction

Lat: 45.96096 Long: 6.94477

Lat: -33.8708476

Long: 151.2073203

<u>Geodesic</u>

26km

1km

Future Work

- Hierarchical Feature Clustering
 - Exploring beam search algorithms to improve accuracy.
 - Scaling to large GPS gallery sizes (1M+).
- Use fine grained text information like neighborhood and county.

Thank You