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Abstract

CoLA[3S] is a general framework for large-scale linear algebra problems in machine
learning. The framework combines a linear operator abstraction with composi-
tional dispatch rules, which automatically constructs memory and runtime efficient
numerical algorithms. CoLA supports GPU acceleration with PyTorch and JAX.
The framework is written in python, which being a developer friendly language
does not provide fine grain access for code optimizations which are obscured from
the developer. We developed CUDA kernels for multiple linear algebra operations
supported by CoLLA. We used concepts such as shared memory, fuse kernels, mem-
ory management to optimize the algorithms. Our results shows that the CUDA
kernels indeed out perform the python implementation in terms of speedup and
memory usage.

1 Introduction

CoLA (Compositional Linear Algebra) is a framework that automates a notorious bottleneck for
ML methods: performing large-scale linear algebra (e.g. matrix solves, eigenvalue problems).
These ubiquitous operations are at the heart of principal component analysis, Gaussian processes,
normalizing flows. It enables efficient manipulation of large linear operators without explicitly
materializing them. It provides abstractions for common operations like matrix multiplication,
Kronecker products, and matrix decompositions through a unified interface across JAX, PyTorch,
and NumPy backends. The framework excels at handling structured matrices and iterative algorithms,
making it particularly useful for fields like scientific computing, optimization, and machine learning
where working with large matrices is common. CoLA exploits the compositional structure of matrices
such as diagonal dominance, sparsity, or a low-rank factorization. Given a structure and a algebraic
operations, CoL A finds a lower computational routine for faster computation (e.g., Cholesky for
inverse of a matrix, Arnoldi method to find subset of eigenvalues).

While CoLA leverages GPU acceleration for numerical linear algebra routines, there are several per-
formance bottlenecks that stem from primarily four architectural choices that impact GPU utilization:

* Dynamic dispatch creates overhead through Python-level type checking and virtual function
calls. Each operation requires method resolution, preventing the compiler from optimizing across
operation boundaries.

* Memory management issues arise from creating new allocations for intermediate results in operation
chains. This leads to memory fragmentation and excessive GPU memory pressure, particularly in
iterative algorithms.

* CPU-GPU synchronization occurs frequently due to Python-level operation composition. Each
small operation can trigger a sync point, stalling the GPU pipeline and reducing parallelism.



* The high-level backend abstractions result in many small kernel launches instead of fused operations.
What could be a single optimized CUDA kernel becomes multiple smaller kernels with associated
launch overhead and reduced GPU utilization. This is especially impactful for complex operation
chains like conjugate transpose matrix multiplications.

These bottlenecks compound when dealing with large matrices or composing multiple operations,
where the overhead becomes more significant compared to the actual computation time.

We specifically target the fourth kind of bottleneck, where we choose three such algorithms and
wrote fused kernels for these routines to demonstrate the advantages of kernel fusion in linear
algebra. These algorithms exemplify common patterns in numerical computing where multiple small
operations can be combined into efficient monolithic kernels. The Cholesky decomposition showcases
triangular matrix operations, Arnoldi iterations demonstrate iterative matrix-vector products with
orthogonalization, and Hutchinson estimation illustrates stochastic trace computation. By fusing
these operations, we reduce kernel launch overhead, minimize memory transfers, and better utilize
GPU resources compared to the CoLA implementation with the PyTorch backend.

Our Algorithms of Interest

+ Cholesky Decomposition: Factorizes a positive definite matrix A into LL " where L is lower
triangular. Used for solving linear systems and computing matrix inverses efficiently.

* Arnoldi Iteration: Iteratively constructs an orthonormal basis for the Krylov subspace to approx-
imate eigenvalues/eigenvectors of large sparse matrices. Each iteration involves matrix-vector
multiplication and Gram-Schmidt orthogonalization.

* Hutchinson Trace Estimation: Stochastic algorithm that estimates the trace (sum of diagonal
elements) of a matrix using random probe vectors, without explicitly computing diagonal entries.
Particularly efficient for large matrices where direct computation is impractical.

All three involve sequences of operations that are typically executed as separate kernels but could ben-
efit from fusion for better GPU utilization. We also considered a CUDA library based implementation
of Singular-Value Decomposition for comparing performance with CoLA’s PyTorch backend.

2 Literature Survey

2.1 Introduction to Linear Algebra Acceleration Frameworks

Recent years have seen increasing demands for efficient large-scale linear algebra computations in
machine learning and scientific computing. Frameworks have emerged to provide high-performance
implementations of fundamental operations like matrix multiplication, eigenvalue decomposition,
and linear system solving. As matrix sizes grow larger, efficient GPU acceleration becomes crucial
for performance. However, as noted in papers like [9]], basic GPU acceleration alone is not sufficient—
hardware-specific optimization techniques are needed to fully utilize GPU hardware capabilities.

2.2 Current Landscape

2.2.1 Matrix Operation Libraries

Traditional linear algebra libraries like LAPACK and BLAS have served as the foundation for
numerical computations. However, these libraries were designed primarily for CPU architectures
and lack native support for modern GPU acceleration patterns. Libraries like cuBLAS (optimized
vectorized operations) and MAGMA provide highly optimized implementations of basic linear
algebra operations. MAGMA particularly stands out for its hybrid CPU-GPU algorithms that
effectively distribute work between host and device [1]. Ginkgo offers a modern approach using C++
templates for hardware abstraction [2]. However, these libraries often focus on individual operations
rather than operation chains or compositional patterns.

2.2.2 Automatic Optimization Frameworks

Systems like XL A demonstrate how automatic optimization can improve performance through
operation fusion [[6]. XL A implements multiple fusion strategies:



* Instruction fusion for simple operation chains
* Fusion merger for reducing memory bandwidth requirements
* Multi-output fusion for sibling and producer-consumer patterns

» Horizontal fusion for similar operations across batches

While XL A can automatically fuse some operations, it struggles with complex linear algebra patterns
like triangular solves or iterative methods.

2.2.3 Compositional Approaches

Julia provides an alternative approach through its multiple dispatch system and JIT compilation.
Julia’s type system allows writing generic linear algebra routines that specialize efficiently for
different data types and hardware. Through abstract array interfaces, Julia can support both CPU and
GPU computation while maintaining a single implementation. Julia relies on LLVM optimizations
and careful manual implementation, while lacking in hardware-specific optimizations[8]].

CoLA takes a novel approach by focusing on the compositional structure of linear operators. This
allows it to automatically select efficient implementation strategies based on matrix properties like
sparsity, diagonal dominance, or low-rank structure [S]]. CoLA’s focus on structure-aware computation
is severely affected by several factors outlined below:

2.3 Key Areas for Optimization in CoLA
2.3.1 Kernel Launch Overhead

A major performance bottleneck in CoLA (and other composable frameworks) comes from launching
many small GPU kernels instead of fused operations. This is particularly impactful for iterative
algorithms like Arnoldi iteration where each step involves multiple operations that could potentially
be fused.

2.3.2 Memory Management

The memory hierarchy in GPUs presents unique challenges for linear algebra operations. Data
movement between different memory levels can become a bottleneck, particularly when operations
are not properly fused. Managing intermediate results in operation chains poses significant challenges
[9]]. Key issues include:

* Memory allocation/deallocation overhead
* Data movement between CPU and GPU

* Buffer reuse opportunities

* Memory access patterns affecting coalescing

For computations over large matrices with iterative algorithms, CoLA creates multiple intermediate
buffers and performs new allocations for each iteration, severely impacting performance.

2.3.3 Synchronization Overhead

Frequent CPU-GPU synchronization can severely impact performance. This is especially notorious
in CoLA where each “op" triggers synchronization through PyTorch, which could potentially be
fused into a single CUDA stream.

2.4 Fusion Strategies

Static analysis techniques, as demonstrated in [7]], can identify fusion opportunities at compile time.
However, they often struggle with dynamic shapes and complex linear algebra patterns that are
common in scientific computing. Runtime fusion approaches, like those used in JAX/XLA, provide
more flexibility but introduce overhead from runtime decision-making. Specialized implementations
of linear algebra operations often outperform general-purpose fusion systems as shown in MAGMA
and Ginkgo.



2.5 Structure-Aware GPU Acceleration

While frameworks like CoLLA provide powerful abstractions that exploit the structure of matrices
to decide the theoretically best algorithm, achieving optimal performance requires careful attention
to GPU-specific optimizations. Bridging the gap between high-level mathematical abstractions and
efficient hardware utilization is the primary focus of this project. We target specialized fusion patterns
for common algorithms that enable better exploitation of matrix properties and improved handling of
irregular computation patterns.

2.6 Pytorch CUDA implementation

TorchDynamo and TorchInductor are key advancements in PyTorch, addressing challenges in dynamic
graph optimization and backend integration with CUDA. TorchDynamo captures PyTorch graphs
by transforming Python bytecode, enabling backend compilation and autotuning. Torch Inductor
leverages Triton for GPU optimization and C++/OpenMP for CPU parallelism, ensuring flexibility
and portability. Using symbolic math via SymPy, TorchInductor supports dynamic shapes and strides
while enabling efficient memory management and guard-based recompilation. These tools enhance
PyTorch’s performance and adaptability for diverse execution environments, unifying research and
production workflows.

3 Proposed Idea

3.1 Arnoldi

The Arnoldi decomposition involves constructing two matrices: a set of Arnoldi vectors and a
Hermitian matrix. Although these are inherently two-dimensional, they are stored as one-dimensional
arrays in CUDA to optimize memory access. In our implementation, unlike ColA which accesses
elements across columns, we process elements row by row. This approach facilitates contiguous
data transfer to Streaming Multiprocessors (SMs), enhancing efficiency. In the Arnoldi algorithm
iterations progresses from 1 to k-1 for each k ranging from 1 to maximum number of iterations.

To further optimize the algorithm, we employed privatization with shared memory and striding
techniques to compute normalization factors and angles between Arnoldi vectors. This involved
a sum reduction process where shared memory was allocated equal to the number of threads per
block. The reduction started with a stride equal to the block dimension, halving it in each iteration
for efficient parallel summation within the block. At the end of each block’s execution, the sum
is stored at index O of the shared memory array and then written to a global memory array at the
index corresponding to the block number. These optimizations minimized global memory usage and
boosted computational performance, enabling efficient handling of large-scale matrix operations

3.2 Cholesky Inverse

The Cholesky decomposition and its inverse for a positive semi-definite (PSD) matrix in parallel
using CUDA. The problem can be divided into three main steps: Cholesky decomposition, in-place
normalization of the columns, and the parallelization of the computation of the inverse of the lower
triangular matrix. This approach is implemented through a series of three kernels, each performing a
specific task within the overall matrix factorization process.

The decompose_cholesky kernel computes the Cholesky decomposition of a matrix by first up-
dating the diagonal elements in-place. A grid-level synchronization is required since all diagonal
elements must be computed before the rest of the blocks can proceed. To achieve this, CUDA
cooperative-groups are used for synchronization. The normalization of the columns is parallelized,
with each entry below the diagonal divided by the corresponding diagonal element. Row updates for
all columns are also parallelized, ensuring efficient element-wise computations. Finally, the upper
triangular part of the matrix is zeroed out, leaving only the lower triangular elements intact. This
approach leverages parallelism to reduce the complexity from O(n?) to O(n?).

The inverse_lower kernel computes the inverse of a lower triangular matrix L stored in Alnv
resulting from Cholesky decomposition. The kernel then parallelizes the computation of the lower
triangular matrix inverse, with diagonal elements computed sequentially and the off-diagonal elements



updated using atomicAdd to prevent race conditions. Finally, the diagonal elements of the inverse
matrix are computed as the reciprocal of the original matrix’s diagonal elements.

The multiply_lower kernel computes the product of a lower triangular matrix L and its inverse L~ *,
storing the result directly in L~!. The diagonal elements are scaled in parallel, while atomicAdd
is used for updating off-diagonal elements to prevent race conditions. Due to sequential row-wise
update for each diagonal element and updating column-wise elements based on the diagonal, the
kernel required many grid-level synchronization.

3.3 Hutchinson

The Hutchinson trace estimator implementation achieves efficient parallel computation of matrix
diagonal elements through three specialized CUDA kernels, each incorporating distinct optimization
strategies. The algorithm employs a stochastic estimation approach, utilizing GPU architecture for
parallel processing while minimizing memory transfers and maximizing computational throughput.

The first kernel, responsible for random vector generation, implements an optimized approach to
parallel random number generation using cuRAND. The kernel utilizes shared memory to store
random number generator states, reducing global memory access latency. Through a grid-stride
processing pattern, each thread processes multiple elements, generating either Rademacher or normal
distributions. Memory coalescing is achieved by ensuring consecutive threads access consecutive
memory locations, while privatization techniques in shared memory minimize bank conflicts and
reduce memory access overhead.

The second kernel leverages cuBLAS’s optimized matrix-vector multiplication (SGEMM) routines for
efficient parallel computation. This kernel processes multiple random vectors simultaneously through
batch processing, maximizing GPU occupancy and computational efficiency. The implementation
maintains memory coalescing through careful data layout and employs asynchronous execution
with CUDA streams to overlap computation and memory transfers. The batch processing approach
significantly reduces kernel launch overhead and improves overall throughput, particularly for large
matrices.

The final kernel focuses on computing diagonal estimates using Welford’s online algorithm for
numerical stability. This kernel employs a shared memory reduction pattern for computing running
statistics, with careful attention to avoiding warp divergence. Thread block synchronization is mini-
mized through careful work distribution, while atomic operations are employed only when necessary
for updating global statistical estimates. Convergence monitoring is implemented through parallel
reduction techniques, computing relative errors efficiently across thread blocks while maintaining
numerical stability.

3.4 Singular Value Decomposition

Our project focused on Linear Algebra for Dense Linear operators, we explored CUDA libraries such
as cuBLAS[3] and caSOLVER[4], which are optimized for high-performance GPU computations.
The cuBLAS library provides basic linear algebra subroutines, enabling efficient matrix and vector
operations on NVIDIA GPUs. The cuSOLVER library offers advanced routines for solving linear
systems, eigenvalue problems, and matrix factorizations, tailored for scientific and engineering
applications. For our SVD decomposition, we have specifically explored:

Kernel Name Algorithm
fuse_kernel_2 Cholesky Inverse
fuse_kernel_3 | Singular Value Decomposition
fuse_kernel_4 Arnoldi
fuse_kernel_5 Hutchinson

Table 1: Kernel names used for corresponding algorithms in CoLA Kernels.

* cublasSgemm: Stands for Single-precision General Matrix Multiplication. Performs a general
matrix multiplication (GEMM) operation. This routine provides Fast MVMs and MMs that are
needed during SVD and stochastic estimation.



* cusolverDnSsyevd_bufferSize and cusolverDnSsyevd: stands for Single-precision Sym-
metric Eigenvalue Decomposition. Computes the workspace buffer size and solves the problem
required for eigenvalue and eigenvector decomposition of symmetric matrices, ensuring efficient
memory allocation during computations.

4 Experimental Setup

To test the performance of our custom CUDA kernels, we built our package using PyTorch’s
cpp_extension, allowing the kernels to be integrated into our CoLA-kernels Python library.
The experiments were run on the CIMS CUDA3 server. We set cudaSetDevice(1) to ensure the
GPU had full memory bandwidth and to avoid interference from other CUDA programs. This setup
allowed us to measure the performance of our kernels accurately. We have profiled our code using
Pytorch Profiler to profile the CPU usage, CUDA usage, memory usage, and total number of kernel
calls.

S Experiments and Analysis

5.1 Arnoldi

To evaluate the performance of the CUDA kernel implementation for computing eigenvalues and
eigenvectors using the Arnoldi decomposition, we conducted benchmarking experiments across
various configurations. These experiments compared the CUDA kernel’s performance against CoLA
CUDA, CoLA CPU, and PyTorch implementations. We tested block sizes of 256, 512, and 1024,
identifying 1024 block size as the optimal configuration for this algorithm. The benchmarking
involved varying the square matrix sizes and the number of iterations to assess scalability and
efficiency under different computational loads and memory usage. The results demonstrate the CUDA
kernel’s superior performance relative to CoLA CUDA, CoLA CPU, and PyTorch when subjected to
identical workloads.

Eigen value calculations using Arnoldi algorithm Eigen value calculations using Arnoldi algorithm
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Figure 1: Time vs size(n, iterations) Figure 2: Speedup compared to CoLLA kernels

CoLA kernels exhibit notable performance enhancements over both CoLA CUDA and CoLA CPU
implementations, achieving up to 5x speedups, as shown in Figures 1 and 2. The largest matrix size
we experimented with is (20000, 20000). Beyond this we ran into CUDA out of memory issues. It is
important to note that PyTorch computes all the eigenvalues and eigenvectors of a matrix, whereas
CoLA is designed to compute only the eigenvalues and eigenvectors corresponding to the number of
iterations. We included the times for completeness.

One of the reason for speedup is due the improved Streaming Multiprocessor (SM) utilization, as
demonstrated in Table 1. To monitor SM utilization and memory usage, we used the nvidia-smi
dmon command, a diagnostic tool that provides real-time insights into GPU metrics such as SM
utilization, power consumption, and memory usage.

From the experimentation, we analyzed that the improved Streaming Multiprocessor (SM) utilization,
Overhead of launch of kernels, coalescing, privatizations are the reason for speedup. One interesting



Implementation/Matrix size | 100k | 400k
Pytorch 67 80
ColA GPU 20 20
ColA Cuda 60 70

Table 2: SM utilization (%)
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Figure 3: Performance of Cholesky Inverse kernels.

finding is that CoLA CPU execution time is comparable to CoLA CUDA which can be explained by
the poor utilization of SMs by CoLA.

5.2 Cholesky Inverse

From the experiments (Figure3), we observe that our Cholesky decomposition implementation is
significantly slower than the PyTorch implementation. Using the PyTorch Profiler, we analyzed the
performance in detail. Table [3]shows the profiling results for the PyTorch implementation, while
Table 7] presents the corresponding results for our kernel.

Kernel Name CPU Time | CUDA Time | CUDA Memory
Memcpy DtoH (Device — Pinned) 0 ms 2.5 ms 0 MB
aten::linalg_cholesky 66.074 ms | 791.001 us 16.00 MB
aten::linalg_cholesky_ex 59.751 ms 0 ms 16.00 MB
aten::cholesky_inverse 28.812 ms 8.444 ms 32.00 MB
Total (Cholesky) 8 ms 6 ms 128 MB

Table 3: Performance analysis of Pytorch decomposition kernel.

In the PyTorch implementation (Table [3), we observe that part of the Cholesky decomposition
computation is executed on the CPU. This approach leverages the fact that the computations are
highly interdependent across data, making certain parts more efficient when performed on the CPU.

Conversely, our kernel (Table[7) performs the entire computation on the GPU. While this avoids
CPU-GPU data transfers, it incurs a performance penalty due to the use of cooperative groups
and atomicAdd operations required by our algorithm. The second observation is for the problem
size n=2048, the memory required by our kernel is 16 MB, as all operations are performed in-place.
In comparison, the PyTorch implementation requires 128 MB, which is 8 times more memory for
the same problem size. And finally, our kernel completes the computation using 4 kernel calls,
whereas the PyTorch implementation utilizes 95 kernel calls to handle the same task. Overall
these operations introduce significant overhead, resulting in slower overall execution compared to
PyTorch’s hybrid CPU-GPU approach.

5.3 Hutchinson

The performance of our kernel is much slower than CoLA, currently.

The analysis of the batch size pattern reveals that smaller batch sizes, such as 16 and 32, are being
used, which are lower than typically expected optimal values. This anomaly suggests potential



Kernel Name CPU Time | CUDA Time | CUDA Memory

decompose_cholesky(float*, int) 0 ms 859.062 ms 16.00 MB

cudaLaunchCooperativeKernel 0 ms 905.684 us 0 MB
Table 4: Performance analysis of our Cholesky decomposition kernel.
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Figure 4: Scaling Performance of CoLA-Kernel in Diagonal Estimation

memory constraints or load balancing issues within the CUDA kernel. To address this, it would be
beneficial to experiment with tuning the grid size and block size parameters in the CUDA kernel
configuration.

Regarding the tolerance pattern, there is an evident inconsistency in the tolerance values used for
different sizes. For instance, a tolerance of 0.001 is used for sizes 1000 and 5000, while a higher
tolerance of 0.1 is used for size 2000. This inconsistency points to potential issues with convergence,
and the observed high error rates (ranging from 0.77 to 1.77) further indicate that the estimations
might not be optimal.

Lastly, examining the maximum iterations parameter, it is observed that all configurations use the
minimum number of iterations, set at 100. Coupled with the high error rates, this suggests that the
algorithm might be stopping early, potentially before reaching an optimal solution. This highlights
the need for reevaluating the stopping criteria to ensure better convergence and more accurate results.

5.4 Singular Value Decomposition

For Singular Value Decomposition (SVD), we utilize NVIDIA’s cuBLAS and cuSolverDn libraries.
SVD primarily consists of matrix multiplications and the computation of eigenvalues and eigenvectors.
For matrix multiplication, we leverage the highly optimized cublasSgemm function, while for
computing eigenvalues and eigenvectors, we use cusolverDnSsyevd (further details can be found in
the Proposed Idea section).

In our experiments, we observed a significant performance improvement, with at least a 10x speedup
when comparing our custom kernel with PyTorch’s native implementation. From the profiling
results obtained from PyTorch, we observed frequent calls to functions such as aten: : transpose,
aten: :clone, and aten: : copy, indicating that a significant portion of the computation time is
spent on tensor manipulations rather than the core SVD operations themselves. Furthermore, as
shown in Table[5] we note that approximately 99% of the time is spent in the svd_batch_rotate
operation.

In contrast, when using our custom kernel, which is built on top of the most optimized NVIDIA
GPU libraries, we observe from Table [f] that the majority of the time is spent in the Symmetric
Matrix-Vector Multiplication (SYMV) algorithm, a key step in the cuSolverDn routine. This shift in



bottleneck from tensor manipulations in PyTorch to SYMV in our optimized kernel suggests that
the use of optimized libraries like cuBLAS and cuSolverDn for matrix operations and eigenvalue
computations provides a significant efficiency gain over the PyTorch implementation.

Kernel Name Total CUDA Time | Avg. CUDA Time | No. of Kernel calls
svd_column_rotate_batch 18.146 s 1.366 ms 13286
svd_row_rotate_batch 13.981 s 2.105m s 6643

Table 5: Profiler of Pytorch SVD

Kernel Name Total CUDA Time | Avg. CUDA Time | No. of calls
cuds_symv_alg6_stagel_upper 1.541 s 188.064 us 8192
Table 6: Profiler of Pytorch SVD

Kernel Name Total CUDA Time | Avg. CUDA Time | No. of Kernel calls
svd_column_rotate_batch 18.146 s 1.366 ms 13286
svd_row_rotate_batch 13.981 s 2.105m s 6643

Table 7: Performance analysis of our Cholesky decomposition kernel.

6 Conclusions

1. PyTorch’s high-level abstractions introduce overheads for flexibility and ease of use, which
we eliminated by writing custom GPU code. This allowed us to fine-tune memory usage,
parallelism, and grid configurations, resulting in significant speedup and improved efficiency.

2. Profiling CoL A revealed significant overhead from numerous kernel launches. To address
this, we optimized the Cholesky inverse by consolidating it into a single kernel. However,
the iterative nature of the algorithm limited full SM utilization. Hence for other algorithms,
we developed separate kernels, merging some, which resulted in notable speedup.

3. Better memory bandwidth utilization, aggressively using shared memory, and ensuring
coalesced memory access patterns are only scratching the surface of CUDA optimizations.
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