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Abstract—Worldwide Geolocation aims to determine the pre-
cise location of images taken anywhere on Earth. Traditional deep
learning methods are impractical due to the immense variation in
geographical landscapes and prediction on a global scale. In this
project, we train a CLIP-based image geolocation model on the
MediaEval-16 dataset and explore various inference approaches
with a focus on efficiency and scalability. Current approaches
(GeoCLIP) perform inference by searching through an entire
gallery of GPS coordinates. To overcome this limitation, we pro-
pose an improved inference method that leverages hierarchical
feature clustering at multiple geographical scales. By organizing
the GPS gallery into a tree structure, we drastically reduce
the search space. Our inference approach achieves comparable
performance to GeoCLIP while being 100x more efficient than
previous methods, making it more practical for large-scale
geolocation tasks. Furthermore, we experimented with retrieval-
augmented generation (RAG)-based inference using multiple
Large Language Models (LLMs), such as GPT-40 and Mistral.
We trained our model on the MP-16 Pro dataset and evaluated
its performance on the IM2GPS3k benchmark, demonstrating
its effectiveness. The code is available on GitHub: Hierarchical
GeoCLIP, G3

I. INTRODUCTION

Geolocalization from visual data is a challenging and in-
tricate task requiring systems to predict geographic coordi-
nates solely from visual cues, such as landscapes, vegeta-
tion, architectural structures, and environmental details. Games
like GeoGuessr highlight human capabilities to analyze such
cues intuitively; however, replicating this process in machine
learning models has proven difficult, particularly for unseen
or ambiguous images. The diversity of global environments,
coupled with challenges in lighting variations and obstructions,
creates a complex generalization problem for machine learning
systems.

Recent advancements in deep learning and vision-language
models (VLMs) have paved the way for improved geolocation
performance. Traditional approaches leveraging Convolutional
Neural Networks (CNNs), such as AlexNet and ResNet,
demonstrate the ability to extract fundamental geographic
features but often struggle with fine-grained predictions. On
the other hand, Vision-Language models, such as CLIP (Con-
trastive Language-Image Pretraining), have enabled improved
semantic understanding by aligning textual and visual features.

In this work, we build on the GeoCLIP framework [1], a
CLIP-inspired Image-to-GPS retrieval approach that enforces
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alignment between images and their corresponding GPS lo-
cations. Unlike GeoCLIP that relies on flat GPS galleries,
we introduce a hierarchical tree structure that organizes GPS
coordinates into multi-level geographic groups (e.g., neigh-
borhoods, cities, countries). This approach drastically reduces
the potential search space and more scalable for large GPS
galleries.

We also explore RAG-based inference techniques and ex-
periment with various large language models (LLMs), such as
GPT-40, Mistral, and LLaMA. By incorporating text embed-
dings into the inference pipeline, we assess the role of textual
information in prediction performance. To further enhance
accuracy, we add neighborhood parameters to the textual
information, enabling the model to make use of fine-grained
geographical context.

We summarize our main contributions as follows:

e Trained a CLIP-based image geolocation model on the

MediaEval-16 Dataset (4M+ images).

e Designed a novel inference approach using hierarchical
feature clustering that drastically reduces the search space
and improves overall efficiency.

o Explore RAG-based inference techniques that leverage
LLMs to incorporate textual information.

II. RELATED WORK

Image geolocation has emerged as an essential task in com-
puter vision, enabling applications such as navigation, crime
tracking, and environmental monitoring. Numerous studies
have tackled this problem using diverse approaches, ranging
from dataset creation to advanced geolocation methodologies.

Large-scale datasets like MP16-Pro [2]] and benchmarks
dataset like IM2GPS [3] and have been instrumental in ad-
vancing geolocation research. The IM2GPS dataset serves as
a benchmark for evaluating geolocation models, providing test
images from diverse global environments to assess model gen-
eralization and accuracy. Additionally, the MP16-Pro dataset
facilitates training by offering extensive geo-tagged images en-
riched with textual geographical descriptions. This multimodal
design supports models in learning the interplay between
visual, textual, and GPS data, making it a valuable resource
for geolocation tasks.

PlaNet [4] reframes geolocation as a classification problem,
dividing the Earth’s surface into multi-scale geographical cells
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and training convolutional neural networks (CNNs) to assign
images to these cells. This hierarchical approach captures
global and regional visual semantics, achieving robust geolo-
cation performance across diverse landscapes.

Methods like IM2City [5] and ETHAN [6] complement
these approaches by incorporating reasoning capabilities and
contextual prompts, enabling fine-grained geolocation predic-
tions. Additionally, techniques such as hierarchical classifi-
cation and geocell partitioning, as employed by PIGEON
[7]], utilize clustering algorithms and semantic boundaries to
balance class distributions and refine predictions.

Models such as CLIP and its adaptations, including Geo-
CLIP [1], have significantly advanced image geolocation by
aligning images, text, and GPS data within a shared embedding
space. GeoCLIP extends CLIP’s capabilities by introducing
a GPS encoder to transform geographical coordinates into
high-dimensional representations, enabling the alignment of
continuous and discrete geographical features. By leveraging
positional encodings, GeoCLIP effectively bridges the gap
between visual and geospatial data, achieving competitive
geolocation performance.

Recent advancements in geolocation include retrieval-
augmented generation (RAG) [8]] frameworks, exemplified
by G3 [8]. G3 addresses the limitations of retrieval- and
generation-based methods by introducing Geo-diversification,
and Geo-verification. These techniques align images with
textual descriptions and GPS data, generate robust candidate
predictions through diverse prompts, and verify predictions
using learned multimodal representations. G3 achieves state-
of-the-art performance on well-established datasets such as
IM2GPS3k and YFCC4k [9], demonstrating its robustness
and scalability.

III. METHODOLOGY
A. GeoCLIP

GeoCLIP builds on the CLIP framework, which enables
the alignment of images and text within a shared embedding
space. It extends the original architecture by incorporating a
GPS encoder to transform geographic coordinates (latitude,
longitute) into high-dimensional representations. This joint
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Fig. 1: GeoCLIP Model Architecture

embedding of visual, textual and geographic features forms
the backbone of GeoCLIP, allowing effective cross-modal
alignment and retrieval.

The image encoder consists of a pre-trained vision trans-
former, which we use as the backbone and keep it frozen. This
model is augmented by two trainable linear layers, which are
necessary for fine-tuning the image encoder.

The location encoder consists of two important components:
(1) RFF Module and (2) MLP Module. The Random Fourier
Features (RFF) module transforms low-dimensional GPS data
(2 coordinates) into higher dimensions that capture high fre-
quency information. This is done by applying a sinusoidal-
based positional encoding to the GPS coordinates using fre-
quencies sampled by a gaussian distribution. The resulting
encoding is then passed to a multi-layer perceptron (MLP)
which can be tuned during training. Additionally, by varying
the o parameter in RFF, we obtain multiple high-dimensional
representations that correspond to different geographical scales
which are aggregated to obtain the final location embedding.

For inference, the original geoclip paper matches the fea-
tures of a query image against a gallery of 100K GPS
embeddings. The algorithm then greedily selects the GPS
embedding with the highest similarity. This approach is not
very efficient or scalable as the image embedding is compared
against all the GPS coordinates in the gallery.

B. Hierarchical feature clustering

We enhance the inference mechanism used by GeoCLIP
by introducing a hierarchical image gallery. Unlike traditional
flat galleries, which organize GPS coordinates as a single col-
lection, our hierarchical structure groups them by geographic
levels.

Our hierarchical feature clustering approach for inference
is designed to improve the efficiency of GeoCLIP’s original
inference method while maintaining competitive accuracy.
Instead of comparing query image embeddings against all
the GPS embeddings in the gallery, we organize the GPS
embeddings into a tree structure based on their hierarchical
features. Our approach mimics human reasoning by first
narrowing to a general area and then zooming in on specifics. It
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Fig. 3: GPS Gallery structure

reduces the number of candidate embeddings during similarity
computation, speeding up the process.

During the encoding process, we generate embeddings for
GPS coordinates using three separate RFF + MLP capsules,
each configured with a different sigma value. These embed-
dings capture features at different geographic scales. The
embeddings from each capsule are clustered separately to
create hierarchical clusters. The GPS gallery is structured as
a hierarchical tree, with cluster centers serving as nodes at
each level. During inference, The query image is processed by
the ImageEncoder to produce an embedding. Then, the query
embedding is compared with the top-level cluster centers to
identify the most similar region. Within the identified region,
the process is repeated with subclusters to narrow down the
candidate GPS coordinates further. Finally, the predicted GPS
coordinate is selected from the most similar subcluster.

C. RAG Inference Method

1) Retrieval-Augmented Generation (RAG)-Based Infer-
ence: To address the limitations of purely retrieval-based
methods, we incorporate RAG for inference. The retrieval
phase identifies top candidate locations from the hierarchical
gallery, aligning input images with similar entries in the shared
embedding space. The generation phase augments these candi-
dates by leveraging large language models (LLMs), including

GPT-4o0, Mistral, and LLaMA. Using multiple prompts tailored
to different geographic contexts, the LLMs generate location
predictions that complement the retrieved candidates.

Our inference pipeline includes Geo-verification, where
retrieved and generated candidates are ranked and refined
based on multimodal similarity metrics. This process ensures
robust predictions even for ambiguous or unseen input images,
effectively addressing generalization challenges.

2) Incorporating Neighborhood-Level Context: To enhance
street-level prediction accuracy, we incorporate neighborhood-
level parameters into the textual descriptions used during
inference. By encoding fine-grained geographical context, such
as landmarks and local features, into the text embeddings, we
enable the model to better differentiate among visually similar
but geographically distinct locations. This additional layer of
context significantly improves the precision of geolocation
predictions at finer granularities.

3) Text Embeddings and Experimental Comparisons: We
assess the role of text embeddings in geolocation performance
by experimenting with models that include and exclude textual
information in the inference pipeline. This comparative analy-
sis highlights the contribution of textual context in refining
predictions, particularly in ambiguous cases where visual
features alone are insufficient for accurate localization.

IV. EXPERIMENTS
A. Dataset Preparation

To explore the potential to improve the prediction of the
location at the street level with additional neighborhood in-
formation, along with city, country, continent. We worked
with the MP16-Pro dataset, an extension of the MediaEval
Placing Task 2016 dataset. The MP16-Pro dataset comprises
4.72 million geotagged images from Flickr, enriched with
multi-level geographical descriptions such as neighborhood,
city, county, state, region, country, and continent.

Precompute CLIP Embeddings: To improve speed-up, we
precomputed the embeddings for all training images and used
them instead of doing inference on the frozen CLIP model.
This reduced the epoch time from 12 hours to under 3 minutes.

Given the size of the data, with images stored as a 400
GB tar file, it was not feasible to load the entire tar file
directly into memory. To address this issue, we tranformed the
dataset into the WebDataset format [], which enabled on-the-
fly extraction and streaming of images. This approach allowed
us to construct a custom dataset and DatalLoader for efficient
training.

B. Model Training and Evaluation

Hyperparameter Tuning and Training: We trained our
model on the entire dataset by precomputing CLIP embeddings
as well as data-limited settings (20% of the data). To optimize
performance under these conditions, we performed extensive
hyperparameter tuning. Key parameters, such as learning rate,
batch size, and dropout rates, were adjusted to ensure effective
learning with limited data. Additionally, we experimented with
various configurations of the hierarchical retrieval structure



and RAG prompts to identify the most effective settings for
our task.

Evaluation: The model was evaluated using the
IM2GPS3K test dataset. The evaluation metric measured
the percentage of predictions falling within specific distance
thresholds (1 km, 25 km, 200 km, 750 km, and 2500 km)
from the ground truth.

C. Hierarchical Feature Clustering

In our experiments, we explored multiple clustering algo-
rithms to organize the GPS gallery, including K-means, DB-
SCAN, and HDBSCAN. For K-means, we evaluated different
approaches to optimize the clustering process, using the elbow
method and metrics like the Silhouette score and Davies-
Bouldin index.
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Fig. 4: Using Elbow method, 150-200 clusters was determined
to be the ideal range.

We also tested DBSCAN, but it struggled to cluster the GPS
coordinates effectively, likely due to the uneven geographical
distribution of the data, as shown in Figures 2? ?? ??.

To structure the GPS gallery, we arranged the clusters
into tree-like hierarchies with one and two levels. For two-
level trees, we analyzed the effects of different configurations,
such as having more clusters at the top level and fewer at
the sublevel, and vice versa. These variations allowed us to
study the trade-offs between hierarchical depth and clustering
granularity.

D. RAG

Embedding Retrieval: For each query image, the RAG
method retrieved the top-20 candidate coordinates based on
similarity. Top-20 negative candidates were also retrieved to
improve robustness of the inference.

Candidate Pool and Selection: We experimented with
varying numbers of RAG candidates and found that candidates
in the range of 7-10 achieved the best accuracy. We conducted
the inference with GPT-40 and mistral models.

Prompts: Below Listing [I] is the prompt provided to the
large multimodal models (LMMs) for geolocation prediction.

You are a geo-localization expert. Given an image,
you must predict its GPS coordinates.

For reference:

— Similar images have coordinates: {candidates_gps}.
— Dissimilar images have coordinates: {reverse_gps}.

Output your best guess in the following strict JSON
format:

{"location":{"latitude": float, "longitude": float}}

If you cannot make a prediction, use the default
output:
{"location": {"latitude": null}}

null, "longitude":

Provide no additional text or error messages.

Listing 1: Prompt for LMMs

E. Implementation Details
Below are the final implementation details.
o Clip Model: openai/clip-vit-large-patch14
o Optimizer: AdamW
. - Learning Rate: 6 x 107
« Batch Size: 256
o Hardware: 1-4 NVIDIA V100 GPUs
o Prediction Model: GPT-40 and Mistral
e Tools: Faiss for embeddings storage, clip-retrieval library

V. RESULTS AND ANALYSIS

We compare the performance of various models across
hierarchical geolocation metrics, including accuracy at street,
city, region, country, and continent levels. In addition, we
highlight the effectiveness of RAG inference with GPT-40 and
mistral vision models. Table [[] shows the comparison of our
model with state-of-the-art models. Our models (RAG with
GPT-40 and RAG with Mistral) was evaluated on a subset
of 500 images from the IM2GPS3K test set due to resource
constraints.

Model training

We conducted ablation studies on GeoCLIP to evaluate
different visual encoders, including ViT-B-32, ViT-L-14, and
ViT-SO400M-14-Sigl.IP-384. SigLIP performed best across
all geographical scales, likely because of its pretraining on
large-scale, diverse datasets. We also experimented with var-
ious batch sizes for training GeoCLIP, testing sizes of 128,
256, 512, 1024, and 2048. While increasing the batch size gen-
erally led to slightly higher performance across most spatial
resolutions, the performance gains at the 2500 km resolution
were inconclusive. This may be because larger batch sizes
improve the representation of fine-grained details by providing
more diverse negative samples in contrastive learning, but at
broader spatial scales (like 2500 km), the model may already
capture sufficient information, leading to diminishing returns.
Additionally, the global-scale features are less dependent on
fine-grained diversity within batches.




TABLE I: RAG: Evaluation Result Comparisons on IM2GPS3K Test Set

Methods Street 1km  City 25km  Region 200km  Country 750km  Continent 2500km
w/o PlaNet 8.5 24.8 343 48.4 64.6
w/o Geo-CLIP 14.11 34.47 50.65 69.67 83.82
wlo G3 16.65 40.94 55.56 71.24 84.68
RAG with GPT-4o 15.01 32.53 60.06 72.5 85.08
RAG with Mistral 13.32 27.23 55.46 62.5 80.6

TABLE II: Hierarchical features: Cluster Size Comparison

GPS Gallery Tree Sizes | Continent 2500km  Country 750km  Region 200km  Street Ikm % of coordinates considered
100000 (original) 0.753 0.568 0.351 0.084 100%
200 (one-level) 0.618 0.390 0.188 0.047 0.7%
800 (one-level) 0.710 0.481 0.253 0.049 1 %
1000 (one-level) 0.701 0.480 0.248 0.050 2%
20, 100 (two-level) 0.676 0.430 0.200 0.034 0.2%
100, 20 (two-level) 0.636 0.398 0.177 0.029 0.2%
200, 10 (two-level) 0.676 0.429 0.200 0.033 0.3%
o Training losses for Visual Encoder ablatiﬁ — Accuracies at Different Spatial Resolutions for given batch-sizes
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Fig. 6: Model Accuracies at Different Spatial Resolutions

Hierarchical Feature clustering

As shown in Table [lI, One-level clustering with 800 clusters
offers the best trade-off between accuracy and efficiency,
closely matching the original implementation while consider-
ing only 1% of the GPS points. Additional levels of clustering
can significantly enhance scalability when dealing with much
larger GPS galleries. For a given clustering level, adding an
additional layer of clustering (e.g., moving from one-level

2500
Spatial Resolution (km)

Fig. 7: Accuracies at Different Spatial Resolutions for given
batch-sizes

with 200 clusters to two-level with 200 top-level and 10 sub-
level clusters) can maintain performance at larger geographical
resolutions (e.g., 2500 km: 0.618 to 0.676) while significantly
reducing the number of candidates considered (from 0.7% to
0.3%). This highlights the potential of multi-level clustering
to balance accuracy and efficiency at broader scales. Figures
[l P visualize a given hierarchically clustered GPS gallery with
the black points representing the cluster centers.

Retrieval-Augmented Generation (RAG)

The Retrieval-Augmented Generation (RAG) inference
based on GPT-40 achieved slightly better results, likely due to
the candidate references and the model’s enhanced vision de-
coding capabilities. In contrast, inference with Mistral model
produced lower accuracy, as it failed to predict locations for
certain images with people or image takes from a further
distance. We also noticed a slight improvement in street
level accuracy when the neighbour information was added to
training.
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VI. CONCLUSION

In this project, we trained a CLIP-based image geolo-
cation model on the MediaEval-16 dataset. We presented
enhanced inference approaches by building upon GeoCLIP
and G3 frameworks. Our method addressed the limitations of
searching through a large gallery of GPS coordinates during
inference by employing an efficient hierarchical clustering-
based method to perform coarse-to-fine geolocalization. Our
inference approach achieved comparable performance to Geo-
CLIP while being 100x more efficient than previous methods,
making it more practical for large-scale geolocation tasks.
Finally, we explored retrieval-augmented generation (RAG)-
based inference techniques with multiple LLMs, such as GPT-
4o, Llama and Mistral, to leverage contextual and semantic
reasoning for robust geolocalization. Our approach achieves
competitive performance even when trained on a smaller
subset of the dataset.

VII. FUTURE WORK

While our current approach leverages CLIP-based em-
beddings and RAG with large multimodal models (LMMs),
several improvements can further enhance performance and
scalability. One promising direction is the incorporation of
beam search algorithms during inference, which systematically
explores the most likely candidate locations, offering greater
geolocation accuracy while mitigating extra computation.
Scaling the system to handle significantly larger GPS galleries
(1IM+ coordinates) is another critical area. Additionally, lever-
aging fine-grained textual information, such as neighborhood
names or county labels, could refine predictions, particularly in
urban or text-rich environments. Another avenue is the use of

diffusion models, which could generate high-quality synthetic
data for underrepresented regions, helping to address dataset
imbalances and improve generalization. These models might
also be applied to augment geolocation by refining noisy visual
inputs or enhancing low-resolution data.

AUTHORS CONTRIBUTION

Akshay Raman and Srikanth Balakrishna worked on Geo-
CLIP model training and hierarchical clustering methods.
Prithviraj Murthy contributed to the Retrieval-Augmented
Generation (RAG) inference using multiple open-source mod-
els. Satyanarayana Chillale conducted experiments on the
models and RAG inference. Aman Gupta was responsible for
data curation and analysis.

REFERENCES

[1] V. Vivanco Cepeda, G. K. Nayak, and M. Shah, “Geoclip: Clip-inspired
alignment between locations and images for effective worldwide geo-
localization,” in Advances in Neural Information Processing Systems,
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine,
Eds., vol. 36. Curran Associates, Inc., 2023, pp. 8690-8701.

[2] P. Jia et al., “Mpl6-pro dataset,” https://huggingtace.co/datasets/Jia-py/
MP16-Pro, 2024, accessed: 2024-12-19.

[3] J. Hays and A. A. Efros, “Im2gps: Estimating geographic information
from a single image,” https://graphics.cs.cmu.edu/projects/im2gps/, 2008,
accessed: 2024-12-19.

[4] T. Weyand, I. Kostrikov, and J. Philbin, “Planet - photo geolocation with
convolutional neural networks,” ArXiv, vol. abs/1602.05314, 2016.

[5] M. Wu and Q. Huang, “Im2city: image geo-localization via multi-modal
learning,” in Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Al for Geographic Knowledge Discovery, ser. GeoAl *22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
50-61. [Online]. Available: https://doi.org/10.1145/3557918.3565868

[6] A. Names, “Ethan: Enhanced geolocation through large vision-language
models,” CVPR, 2024.

[7] L. Haas, M. Skreta, S. Alberti, and C. Finn, “Pigeon: Predicting image
geolocations,” 2024. [Online]. Available: https://arxiv.org/abs/2307.05845

[8] P. Jia et al., “G3: An effective and adaptive framework for worldwide
geolocalization using large multi-modality models,” NeurIPS, 2024.

[91 Y. Research, “Yfccdk dataset,” |https://multimedia-commons.s3.
amazonaws.com/index.html, 2016, accessed: 2024-12-19.

APPENDIX

The appendix below includes additional ablation studies
involving different clustering algorithms and cluster sizes.
We also include some sample model predictions on different
settings.
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(a) Sydney Tower

Actual: —33.861328, 151.209039
Final: —33.8708476, 151.2073203
Zero Shot: —33.870987, 151.208843
5 RAG: —33.8708476, 151.2073203

10 RAG: —33.870846, 151.206732
15 RAG: —33.869844, 151.209296

Geodesic Distance: 1.0678 km

(b) Mountain Region

Actual:  46.167286, 7.099698
Final: 45.96096, 6.94477
Zero Shot:44.0958, 6.8467

5 RAG: 44.4343, 6.6292

10 RAG: 45.96096, 6.94477
15 RAG: 45.920135, 6.869433

Geodesic Distance: 25.8776 km

Fig. 13: Two samples from the IM2GPS3K dataset. For each image, we provide the actual location, the final
predicted location, and the RAG-based inference predictions using different numbers of candidate references

supplied to the large multimodal models (LMMs).
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